Hadoop简介

Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等.

这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop:

Map/Reduce:

  1. MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一部是分布式计算框架,就是mapreduce,缺一不可,也就是说,可以通过mapreduce很容易在hadoop平台上进行分布式的计算编程。

  2. Mapreduce是一种编程模型,是一种编程方法,抽象理论。

  3. 下面是一个关于一个程序员是如何个妻子讲解什么是MapReduce?文章很长请耐心的看。

 1我问妻子:“你真的想要弄懂什么是MapReduce?” 她很坚定的回答说“是的”。 因此我问道:
 2
 3我: 你是如何准备洋葱辣椒酱的?(以下并非准确食谱,请勿在家尝试)
 4
 5妻子: 我会取一个洋葱,把它切碎,然后拌入盐和水,最后放进混合研磨机里研磨。这样就能得到洋葱辣椒酱了。
 6
 7
 8妻子: 但这和MapReduce有什么关系?
 9
10我: 你等一下。让我来编一个完整的情节,这样你肯定可以在15分钟内弄懂MapReduce.
11
12妻子: 好吧。
13
14我:现在,假设你想用薄荷、洋葱、番茄、辣椒、大蒜弄一瓶混合辣椒酱。你会怎么做呢?
15
16妻子: 我会取薄荷叶一撮,洋葱一个,番茄一个,辣椒一根,大蒜一根,切碎后加入适量的盐和水,再放入混合研磨机里研磨,这样你就可以得到一瓶混合辣椒酱了。
17
18我: 没错,让我们把MapReduce的概念应用到食谱上。Map和Reduce其实是两种操作,我来给你详细讲解下。
19Map(映射): 把洋葱、番茄、辣椒和大蒜切碎,是各自作用在这些物体上的一个Map操作。所以你给Map一个洋葱,Map就会把洋葱切碎。 同样的,你把辣椒,大蒜和番茄一一地拿给Map,你也会得到各种碎块。 所以,当你在切像洋葱这样的蔬菜时,你执行就是一个Map操作。 Map操作适用于每一种蔬菜,它会相应地生产出一种或多种碎块,在我们的例子中生产的是蔬菜块。在Map操作中可能会出现有个洋葱坏掉了的情况,你只要把坏洋葱丢了就行了。所以,如果出现坏洋葱了,Map操作就会过滤掉坏洋葱而不会生产出任何的坏洋葱块。
20
21
22Reduce(化简):在这一阶段,你将各种蔬菜碎都放入研磨机里进行研磨,你就可以得到一瓶辣椒酱了。这意味要制成一瓶辣椒酱,你得研磨所有的原料。因此,研磨机通常将map操作的蔬菜碎聚集在了一起。
23
24妻子: 所以,这就是MapReduce?
25
26我: 你可以说是,也可以说不是。 其实这只是MapReduce的一部分,MapReduce的强大在于分布式计算。
27
28妻子: 分布式计算? 那是什么?请给我解释下吧。
29
30我: 没问题。
31
32我: 假设你参加了一个辣椒酱比赛并且你的食谱赢得了最佳辣椒酱奖。得奖之后,辣椒酱食谱大受欢迎,于是你想要开始出售自制品牌的辣椒酱。假设你每天需要生产10000瓶辣椒酱,你会怎么办呢?
33
34妻子: 我会找一个能为我大量提供原料的供应商。
35
36我:是的..就是那样的。那你能否独自完成制作呢?也就是说,独自将原料都切碎? 仅仅一部研磨机又是否能满足需要?而且现在,我们还需要供应不同种类的辣椒酱,像洋葱辣椒酱、青椒辣椒酱、番茄辣椒酱等等。
37
38妻子: 当然不能了,我会雇佣更多的工人来切蔬菜。我还需要更多的研磨机,这样我就可以更快地生产辣椒酱了。
39
40我:没错,所以现在你就不得不分配工作了,你将需要几个人一起切蔬菜。每个人都要处理满满一袋的蔬菜,而每一个人都相当于在执行一个简单的Map操作。每一个人都将不断的从袋子里拿出蔬菜来,并且每次只对一种蔬菜进行处理,也就是将它们切碎,直到袋子空了为止。
41这样,当所有的工人都切完以后,工作台(每个人工作的地方)上就有了洋葱块、番茄块、和蒜蓉等等。
42
43妻子:但是我怎么会制造出不同种类的番茄酱呢?
44
45我:现在你会看到MapReduce遗漏的阶段—搅拌阶段。MapReduce将所有输出的蔬菜碎都搅拌在了一起,这些蔬菜碎都是在以key为基础的 map操作下产生的。搅拌将自动完成,你可以假设key是一种原料的名字,就像洋葱一样。 所以全部的洋葱keys都会搅拌在一起,并转移到研磨洋葱的研磨器里。这样,你就能得到洋葱辣椒酱了。同样地,所有的番茄也会被转移到标记着番茄的研磨器里,并制造出番茄辣椒酱。

上面都是从理论上来说明什么是MapReduce,那么咱们在MapReduce产生的过程和代码的角度来理解这个问题。

如果想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那收集好论文后,该怎么办呢?

方法一:

我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。 这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。

方法二:

写一个多线程程序,并发的遍历论文.

这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。

方法三:

把作业交给多个计算机去完成。 我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑 得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要 把N个运行结果进行整合(当然我们也可以再写一个程序)。

方法四:

让MapReduce来帮帮我们吧!

MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的 。我们只要定义好这个任务(用户程序),其它都交给MapReduce。

map函数和reduce函数 

1map函数: 接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数。 
2
3reduce函数: 接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。 

在统计词频的例子里,map函数接受的键是文件名,值是文件的内容,map逐个遍历单词,每遇到一个单词w ,就产生一个中间键值对<w, 1>,这表示单词w咱又找到了一个;MapReduce将键相同(都是单词w)的键值对 传给reduce函数,这样reduce函数接受的键就是单词w,值是一串"1"(最基本的实现是这样,但可以优化) ,个数等于键为w的键值对的个数,然后将这些“1”累加就得到单词w的出现次数。最后这些单词的出现次数会被写到用户定义的位置,存储在底层的分布式存储系统(GFS或HDFS)。

执行过程

图1展示了我们的实现中MapReduce操作的整体流程。当用户程序调用MapReduce函数时,会发生下面一系列动作(图1中的标号与下面列表顺序相同):

 11. 用户程序中的MapReduce库首先将输入文件切分为M块,每块的大小从16MB到64MB(用户可通过一个可选参数控制此大小)。然后MapReduce库会在
 2一个集群的若干台机器上启动程序的多个副本。
 3
 42. 程序的各个副本中有一个是特殊的——主节点,其它的则是工作节点。主节点将M个map任务和R个reduce任务分配给空闲的工作节点,每个节点一
 5项任务。
 6
 73. 被分配map任务的工作节点读取对应的输入区块内容。它从输入数据中解析出key/value对,然后将每个对传递给用户定义的map函数。由map函数
 8产生的中间key/value对都缓存在内存中。
 9
104. 缓存的数据对会被周期性的由划分函数分成R块,并写入本地磁盘中。这些缓存对在本地磁盘中的位置会被传回给主节点,主节点负责将这些位置
11再传给reduce工作节点。
12
135. 当一个reduce工作节点得到了主节点的这些位置通知后,它使用RPC调用去读map工作节点的本地磁盘中的缓存数据。当reduce工作节点读取完了
14所有的中间数据,它会将这些数据按中间key排序,这样相同key的数据就被排列在一起了。同一个reduce任务经常会分到有着不同key的数据,因此
15这个排序很有必要。如果中间数据数量过多,不能全部载入内存,则会使用外部排序。
16
176. reduce工作节点遍历排序好的中间数据,并将遇到的每个中间key和与它关联的一组中间value传递给用户的reduce函数。reduce函数的输出会
18写到由reduce划分过程划分出来的最终输出文件的末尾。
19
207. 当所有的map和reduce任务都完成后,主节点唤醒用户程序。此时,用户程序中的MapReduce调用返回到用户代码中。

成功完成后,MapReduce执行的输出都在R个输出文件中(每个reduce任务产生一个,文件名由用户指定)。通常用户不需要合并这R个输出文件——他们经常会把这些文件当作另一个MapReduce调用的输入,或是用于另一个可以处理分成多个文件输入的分布式应用。